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ABSTRACT
The significant improvements and falling costs of photovoltaic (PV)
technology make solar energy a promising resource, yet the cloud
induced variability of surface solar irradiance inhibits its effective
use in grid-tied PV generation. Short-term irradiance forecasting,
especially on the minute scale, is critically important for grid sys-
tem stability and auxiliary power source management. Compared
to the trending sky imaging devices, irradiance sensors are inex-
pensive and easy to deploy but related forecasting methods have
not been well researched. The prominent challenge of applying
classic time series models on a network of irradiance sensors is
to address their varying spatio-temporal correlations due to local
changes in cloud conditions. We propose a local vector autore-
gressive framework with ridge regularization to forecast irradiance
without explicitly determining the wind field or cloud movement.
By using local training data, our learned forecast model is adaptive
to local cloud conditions and by using regularization, we overcome
the risk of overfitting from the limited training data. Our system-
atic experimental results showed an average of 19.7% RMSE and
20.2% MAE improvement over the benchmark Persistent Model
for 1-5 minute forecasts on a comprehensive 25-day dataset.

CCS Concepts
•Computing methodologies → Supervised learning by regression;
•Applied computing → Environmental sciences;

Keywords
Solar Forecast; Sensor Network; local vector autoregressive (LVAR)

1. INTRODUCTION
Solar energy is emerging as the most promising energy resource
to address the world’s increasing energy demand and depletion of
non-renewable energy sources. In the past decade, significant tech-
nological improvements and rapidly dropping costs of solar panels
have made them more affordable than ever. As of 2014, 158 GW
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Figure 1: Locations of the 25 irradiance monitoring sensors in Long Island
Solar Farm (LISF), New York, USA. Source: Google Maps, retrieved on
August 30th, 2015.

of non-concentrated photovoltaic (PV) modules have been installed
worldwide [1]. The U.S. solar industry grew by 34% since 2013,
and is planning to double the existing solar capacity over the next
two years [2]. However, unlike conventional power sources, the
nature of surface solar irradiance is inherently variable. The diur-
nal and seasonal irradiance oscillations can be determined by the
solar position, but a cloud induced variability may produce irradi-
ance drops of 70% or more within a short period of 5 minutes [3].
If ramps of this magnitude can be predicted accurately, grid-tied
PV generation will be more stable and reliable, potentially increas-
ing its penetration into the electricity market. Recent regulations
further enforce variation limits of 10% per minute on PV plants
for smooth transitions to the grid in Puerto Rico and Canada [4,
5], and Australia requires minute forecasts to manage ancillary ser-
vices [6]. Thus, accurate solar forecasting on the minute scale is
essential to preserve power quality, reduce PV upkeep costs, and
maintain reliability for smart grid integration .

The forecasting of Global Horizontal Irradiance (GHI), the main in-
put for most solar power generation systems, has been addressed in
the past by numerous methods depending on the forecast horizon,
as well as the instrumentation available. Physics-based methods
such as numerical weather prediction and satellite-based models
are optimal for hourly and longer horizons [7]. For intra-hour fore-
casts, statistical methods which rely purely on historical GHI data
have been well established, such as autoregressive (AR) and Arti-
ficial Neural Network (ANN) [8], but they only showed marginal
improvement over the baseline Persistent Model (PM), which di-
rectly uses the present irradiance as the prediction. To better cap-
ture high frequency fluctuations of irradiance, ground sky imager-
based prediction was recently developed. Local cloud movements
are determined from consecutive images, and then pixel values with
cloud cover information are correlated to GHI through supervised
learning [9, 10]. However, forecasting accuracy suffers due to accu-
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mulated errors from multiple processing steps, and the pixel cross
correlation for cloud tracking is computationally intensive. Addi-
tionally, as sky imagers are costly and expensive to maintain, they
are not commonly deployed together with solar panels.

A network of ground irradiance sensors with high sampling rate is
an alternative to sky imagers for solar forecasting (see an example
in Figure 1), where neighboring sensors can be sequentially influ-
enced by the same passing clouds. These sensors are sparsely dis-
tributed across various ranges as they were originally designed for
resource assessment purposes. Lately, researchers have started in-
vestigating the correlation of the GHI time series from along-wind
and cross-wind sensor pairs in a high spatial density network [11].
In [12], by manually arranging sensors in a semicircle, the cloud
motion vector is derived from the alignment and distance of the
most correlated pair. It was then used for a solar forecast up to
two minutes through a direct propagation of the current irradiance
distribution across the plant, though with minimal gains [13].

Compared to sky imagers that visualize the cloud movement, sen-
sor networks have a significant advantage as much of this informa-
tion is inherently embedded within the spatio-temporal correlation
among sensors. This strongly suggests to forecast GHI by model-
ing the variations of adjacent sensors, without having to explicitly
determine wind field or cloud movement as an intermediate step.
Therefore, it is desirable to predict the GHI of each sensor with a
combination of both its previously observed values and a weighted
sum of the time series from correlated neighboring sensors. It is
essentially applying a previously popular univariate autoregressive
(AR) model into a vector autoregressive (VAR) framework, with
constant parameters representing a static spatio-temporal correla-
tion within the sensor network.

In practice, however, the interdependency among sensors varies as
both wind direction and speed can change from different days or
even hours within one day, as shown in Figure 2. As the weather
conditions are slowly evolving over time, it is feasible to divide the
time series to smaller intervals where the weather locality holds.
Case studies in [14] predicted sensor GHI using manually selected
up-wind neighbors according to known wind information. Without
exogenous input, the underlying correlation among sensors is better
described by the most recent trends to accommodate for the chang-
ing environmental conditions, instead of global sensor correlation
trends.

In this paper, we propose a local VAR (LVAR) framework to model
the local sensor correlation in a highly dense network. Through
learning using the very recent data, the dynamic spatial-temporal
correlation can be approximated by a VAR model with constant
parameters and thus underlying correlated sensor neighbors are dis-
covered implicitly in an automated fashion. We further apply Ridge
regularization on the Ordinary Least Square (OLS) solution to ad-
dress the overfitting issue that occurs especially in the context of
small local learning intervals or high model order, given the much
smaller volume of training data. By employing LVAR, we provide
an efficient solar irradiance forecasting framework that is robust to
all cloud types and weather conditions.

The main contributions of this paper are summarized as follows:
1. Local Vector Autoregressive Ridge (LVARR) Framework We
propose to utilize LVAR with Ridge regularization to model the
spatio-temporal dynamics of a sensor network with only endoge-
nous input for solar forecasting. Given the challenges of limited
learning data, we introduce regularization for the learned LVAR
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Figure 2: The locality of spatial-temporal correlations among sensors. (a)
Around noon on May 9th, 2013, sensor 25 follows the trend of sensor 11,
indicating an eastern wind. This pattern is reversed two hours later as the
wind direction changes. (b) On May 23rd, 2013, sensor 1 follows sensor
22 in the morning, suggesting a southwestern wind, and sensor 17 in the
afternoon as the wind shifts to the south.

models to ensure stable estimations and further optimize the per-
formance. 2. Locality Study and Systematic Evaluation We sys-
tematically study the locality and perform retrospective forecasts
on a dataset consisting of 300,000 points in 2013 from a network
of 25 stations. For 1-5 minute irradiance forecasts, we observe an
average of 19.7% RMSE and 20.2% MAE improvement over the
baseline Persistent Model, which is reported to be difficult to sur-
pass [7, 15].

2. BACKGROUND
Time series forecasting methods, which relate historical GHI data
to future values, have been classically employed. In this section,
we start with the introduction of the most commonly used refer-
ence model in the field, and extend to more generalized time series
models.

2.1 Persistent Model
The simplest and yet still challenging baseline in short-term irradi-
ance prediction is the Persistent Model (PM ). This model assumes
that the irradiance at time t on the sensor k, yk,t, is best predicted
with its value previously observed at time t− 1, yk,t−1:

yk,t = Ak,1yk,t−1 + ek,t, t = 1, . . . , T (1)

where Ak,1 is always 1 and the error term, ek,t, is assumed to
be zero mean. Persistent Model performs very well for clear and
overcast conditions, where the irradiance variation over time is rel-
atively small. Large errors usually occur when passing opaque
clouds bring abrupt changes to the measured irradiance. As shown
in the GHI analysis of [10], GHI has a very high autocorrelation
in the order of minutes, and this is seen even on very cloudy days.
Recent studies reported that this baseline is very difficult to beat
for forecasts within 15 minutes [7, 13, 14, 15, 16]. Although it is
very effective, it does not take advantage of periodic cloud patterns
because it simply follows the immediate past.

2.2 Autoregressive (AR) Model
One of the main methods to analyze time series data is by using a

2114



parametric approach. This assumes that there is a certain structure
in the underlying stochastic process, which can be described by a
small number of parameters. The Autoregressive (AR) model is
such a representation that models the output variable to be linearly
dependent on its own previous values and a stochastic term. In
fact, the aforementioned PM can be considered as a special case
of AR(1) where the coefficient is always 1. We can extend AR(1)
to the more general form of AR(p) and incorporate potential p dif-
ferent time delaying factors caused by periodic irradiance patterns.
The irradiance at time t on the sensor k is then modeled by:

yk,t =

p∑
i=1

Ak,iyk,t−i + ek,t, t = 1, . . . , T (2)

where p is called ”model order”, and ek,t is white noise. The task
then is to estimate the parameters Ak,i that describes the stochastic
process of irradiance.

The AR model is widely used in solar and wind prediction. As
investigated in the latest study of machine learning techniques for
solar forecasting [16], when given only endogenous input of his-
torical GHI, non-linear methods such as Support Vector Machine
(SVR) and Neural Network (NN) do not outperform their simple
counterparts (AR) for forecasting horizons less than one hour. Al-
though AR(p) is ideal for capturing periodic irradiance patterns, it
does not take into account the main cause of irradiance variability
- cloud interference.

2.3 Vector Autoregressive (VAR) Model
While a single sensor provides measurements of temporal irradi-
ance behavior, a network of sensors also presents spatial variability
of irradiance due to cloud movement, over a distributed geograph-
ical location. In Figure 2, GHI time series from sensors aligned
with the direction of cloud movement are highly correlated. In par-
ticular, the time series of the up-wind sensor is lagged by the cloud
travel time.

Therefore, to effectively utilize the strengths of a sensor network,
we generalize a univariate (AR) forecasting model into a vector au-
toregressive (V AR) framework to incorporate all available sensors
in the network. Each sensor is thus predicted as a linear combina-
tion of both its own time series, and a weighted sum of the time se-
ries from other sensors. V AR framework can systematically model
the underlying causality among correlated sensors, i.e. by giving a
higher weight to the lagged value of the most relevant neighbors,
without explicit interpretation of wind field or cloud movement. A
V AR model with model order p (V AR(p)) has the form:

yt =

p∑
i=1

Aiyt−i + et, t = 1, . . . , T (3)

where n is the number of sensors, yt is a n × 1 irradiance vector,
Ai is an n× n matrix representing the coefficients of model order
i, and et is an n× 1 error vector.

Expanding all the equations, we can get a matrix form:

Y = XB + E (4)

Y
(m×n)

=


y′
p+1

y′
p+2

...
y′
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Figure 3: 2 minutes lagged cross correlation between 25 sensors on
monthly data (a) and hourly data (b) and (c). For monthly data, overcast
and clear periods produce time-series of relatively low variability. This re-
sults in a overall high correlation, and still retains the higher correlation
along the diagonal, representing neighboring sensors. Hourly cross correla-
tions on May 7th show two different patterns between the morning (b) and
the afternoon (c), indicating the change of wind speed and direction.

B
(np×n)

=


A′

1

A′
2

...
A′

p

 , E
(m×n)

=


e′p+1

e′p+2

...
e′T

 .

The matrix B can be estimated by OLS (Ordinary Least Square) as
follows:

B̂ = (X ′X)−1X ′Y (5)

when X ′X is invertible (m ≥ np and non-singular). The OLS esti-
mates are optimal with respect to being the best unbiased estimator
of B, at the cost of high variance.

Since we incorporated a vector of sensors into the model with p
model order, the learned model has a high risk of overfitting. To
overcome the overfitting issues of V AR(p), we regularize the co-
efficient matrix A using Ridge regularization.

argmin
B

||Y −BX||2F + λ||B||2F (6)

where λ controls the degree of regularization and || · ||F is the
Frobenius norm. We call it V ARR(p) and the least square solu-
tion can be solved as follows:

B̂ = (X ′X + λI)−1X ′Y (7)

where I is a diagonal identity matrix.

3. LOCAL VECTOR AUTOREGRESSIVE
(LVAR) MODEL

Although V ARR(p) introduced in Section 2 provides a flexible
framework that systematically captures relationships among multi-
ple time series from sensors, there is an inherent assumption that
the spatio-temporal correlations are static and constant. However,
the heteroscedatistic nature of wind field and cloud movement vio-
lates this basic assumption [17]. In Figure 3(a), we can see similar
correlation patterns across all sensors in the network over a month,
as well as slightly stronger correlations within closely located sen-
sors. Yet the spatio-temporal correlations show distinctive patterns
when examined on an hourly scale, such as Figure 3(b) and (c),
which display a correlation shift from morning to afternoon. This
strongly indicates that modeling local cloud patterns instead of a
global weather trend is required.

We propose a local vector autoregressive (LV AR) model for short-
term GHI prediction to estimate the joint dynamics of multivariate
time series from a sensor network. Instead of learning a global
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model, LV AR allows time-varying parameters to adapt to local
climate changes. To balance between time dependent parameters
at each time point and one set of constant parameters like V AR,
we apply a local homogeneity assumption that there exists an op-
timal time interval in the immediate past over which the current
local spatio-temporal correlation can be approximated by a V AR
model with constant parameters. This assumption can reduce com-
putational complexity while maintaining model flexibility. It holds
since most of the parameters affecting the sensor readings are slowly
evolving over time, such as wind direction and speed, and large
scale changes such as cloud formation and deformation can be ex-
cluded in the small scale of a dense sensor network.

Given the local homogeneity assumption, our learning objective
function is adapting to local training, thus we have a different B
for each training time t with the local training length L, Bt:

argmin
B(t)

||Y (t) −X(t)B(t)||2F (8)

where

Y (t)

((L−p)×n)
=


y′
t−L+p+1

...
y′
t−1

y′
t

 ,

X(t)

((L−p)×np)
=


y′
t−L+p y′

t−L+p−1 · · · y′
t−L

...
...

. . .
...

y′
t−2 y′

t−3 · · · y′
t−p−1

y′
t−1 y′

t−2 · · · y′
t−p

 ,

B(t)

(np×n)
=


A′

p

...
A′

2

A′
1

 , E(t)

((L−p)×n)
=


e′t−L+p+1

...
e′t−1

e′t

 .

LV AR allows flexible and automated choice of lagged variables
with the highest correlation to predict sensor irradiance. Local cli-
mate is described by the updating parameters learned from recent
data. By looking at a relatively small time interval, correlations
among neighboring sensors are more precisely modeled. When
wind direction is unfavorable and correlation is not observed for
the certain sensor, the model would switch to an autoregressive one
by giving higher weight to its own lagged variables. LV AR is in a
way similar to a stochastic model for a time series that generally re-
flects the fact that observations close together in time will be more
closely related than observations further apart.

Compared to V AR, LV AR requires a more significant regular-
ization because the amount of training data is limited to only L
subsamples. Overfitting has a higher chance to occur as the num-
ber of parameters in the model is excessive relative to the num-
ber of observations. In other words, the OLS solution requirement,
m >> np, is much more difficult to satisfy in this situation. Again,
to overcome overfitting, we add the Ridge regularization term:

argmin
B(t)

||Y (t) −X(t)B(t)||2F + λ||B(t)||2F . (9)

We call the above model LV ARR(p). The λ controls the strength
of penalty for introducing more variables. With the advantage of
stability, Ridge regression is a great alternative to subsets selection

Figure 4: Representative daily GHI of the 25-day dataset.

of regressor variable for parameter shrinkage. Introducing bias to
the estimate substantially reduces the high variance due to the co-
linearity of interdependent variables, thus ensures better predictive
performance on the unseen data.

LV AR requires more training times than V AR if we use gradi-
ent based optimization methods, but since the size of training data
at each time t is much smaller, it has great potential for being de-
ployed in real-time solar forecasting.

4. EXPERIMENTS
In this section, we present the description of the experimental setup,
results, and analysis. Models introduced in Section 2 and Section
3 were systematically evaluated. We present substantial evidence
that LV ARR outperforms all other models including the baseline
PM . Their respective performances are analyzed and the results
are given below in terms of the three different statistical measures.

Data and Experimental Setup

Figure 1 shows the layout of the network of 25 irradiance monitor-
ing sensors in Long Island Solar Farm (LISF), New York, United
States. Our dataset consists of 25 days of GHI time series from May
1st to May 31st, 2013, where 6 days were omitted from the month
due to sensor operational downtime. GHI data was collected every
1 second from 25 sensors in the network and sampled at a 1 minute
resolution. Due to the low elevation angle of the sun in the early
morning and late afternoon in the northern hemisphere, we chose
data from 8:00 to 16:00 on each day, when PV plants generate the
most power from solar irradiance. Collectively, we have 12,000
data points per day, with a total of 300,000 points in the dataset.
The GHI value was normalized using the Clear Sky Index [9] and
converted back for error rate calculation. This dataset encompasses
a diverse collection of weather type and cloud condition and is not
biased towards any specific scenario. Representative daily GHI are
shown in Figure 4, where we capture conditions such as clear sky,
broken clouds, and scattered clouds.

For V AR and V ARR model parameter selection, we applied the
K-fold Cross Validation approach, where dataset was partitioned
into K separate sets of equal size. Of the K subsets, one single
subset was retained as the validation data to test the model, while
the remaining K − 1 subsets were used as training data. In this
study, we used K = 5, with each fold containing 5 complete days
for the optimization of order p and regularization term λ.

In LV AR and LV ARR, since training data is local and online,
the cross validation was not applicable. Thus model parameter
optimization was achieved by a systematic grid search on order p
(1-9), local training length L (40-400), and regularization term λ
(10−2-104) through the whole dataset. For completeness the first
L data points of each day are predicted with PM .
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Figure 5: Comparisons of models on the full 25-day dataset using three
different evaluation metrics: (a) Forecast Skill, (b) RMSE, and (c) MAE.
Across all metrics and forecast horizons, LV ARR shows the greatest im-
provement over baseline PM .

1 min 2 min 3 min 4 min 5 min
Full Set FS 0.234 0.211 0.203 0.169 0.166
Subset FS 0.259 0.226 0.225 0.184 0.189

Table 1: LV ARR forecast skill for 1 -5 minutes prediction on the full
dataset of 25 days and the subset of selected 5 days.

In addition to the complete 25-day dataset, we chose a subset of
five days, where sensor correlation shifts were apparent by visual
inspection of the raw time series data. This subset includes intra-
day changes in wind speed and direction, as shown in Figure 2, and
also multi-layered clouds where each layer has different wind field
(i.e. May 8th) as presented in Figure 4.

Evaluation Metrics

We used three evaluation metrics in this study: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Forecast Skill
(FS). By squaring the error, RMSE gives more weight to larger
errors, skewing the error estimate towards the outliers. RMSE is
more useful because large errors, which lead to disproportionately
high losses, are particularly undesirable in solar forecasting. Used
together with MAE, variation in the errors can be diagnosed in a
set of forecasts. Forecast Skill indicates the forecast improvement
of a certain model over the reference PM introduced in Section 2.

RMSE =

√√√√ 1
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Figure 6: LV ARR stability of 1, 3, 5 minute forecast.

MAE =
1

N

N∑
i=1

|GHIforecast,i − GHImeasured,i| (11)

where N is the number of total points in the dataset.

Forecast Skill =
RMSEPM − RMSE

RMSEPM
(12)

Result and Analysis

Considering that PM in short-term irradiance prediction (1-5 min-
utes) is very difficult to beat, we can verify that we have achieved
significant improvements using a sensor network as shown in Fig-
ure 5. In the literature, short-term forecasts that incorporate cloud
motion estimated through sky images have either reported the lim-
ited application of their methods on clear sky condition, thin layer
cloud, and multi-directional wind fields [7, 15], or based their vali-
dation on a manually curated cloudy dataset that is disadvantageous
to PM [9]. V AR models are more applicable under known con-
stant wind conditions and showed promising performance [14]. Be-
cause V AR and V ARR do not adapt to the local context of cloud
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1 min 2 min 3 min 4 min 5 min
P 1 1 2 2 3
L 80 100 80 140 140

logλ 1.3 1.7 2.1 2.3 2.5

Table 2: Optimal model order, local training length, and regularization
term through grid search for the full 25-day dataset

conditions, our proposed LV AR and LV ARR showed a predic-
tion performance boost over PM , V AR, and V ARR in terms of
RMSE, MAE, and FS on the diverse dataset.

V AR models underperformed for 1 and 2 minute predictions and
were comparably worse than PM in terms of RMSE and FS due to
the strong impact of autocorrelation. In particular, RMSE penalizes
large errors more compared to MAE, and we could observe these
effects in the collection of all three error metrics. The employment
of regularization improved the performance of LV AR by a signif-
icant 10.34%, and V AR by a marginal 2.17% as the training data
is sufficient to generalize the model well. As discussed in Section
3, the regularization prevented the trained model from being over-
fitted, which is especially critical for LV AR.

To further validate the capability of LV ARR to adapt to changing
cloud conditions, we compared the forecast skill between the full
dataset and the subset in Table 1. The subset includes higher wind
variability within a day, which stresses the need for a locality mod-
eling. This is reflected in the 9.7% further improvement over the
full dataset for one minute predictions. This improvement gradu-
ally decreased as we increased the prediction horizon.

In terms of model parameter sensitivity, we tested the stabilities of
both model order p, and the amount of local training length L with
appropriate regularization. For one minute predictions, Figure 6
shows the strong preference for a small model order p and local
training size L, but the area around the global minimum is broad
and has a smooth gradient. In addition, the optimal p and L val-
ues are getting larger as we increase the prediction horizon from
one minute to five minutes, which is expected. Table 2 shows the
optimal p, L, and λ values for 1-5 minute prediction from the grid
search which reaffirms this trend. As we had more parameters to
tune by increasing p, the optimal λ was also increased to control the
model complexity and avoid overfitting. For larger L, we also need
to increase λ to get the same level of regularization, i.e. between
one and two minutes and between three and four minutes.

5. CONCLUSION
In this paper, we proposed a short-term (1-5 minute) solar irra-
diance forecasting framework, which models the spatio-temporal
variation of GHI by utilizing a network of sensors. To accommo-
date local climate condition changes, we propose a local vector
autoregressive (LV AR) model, which only uses the endogenous
input of historical GHI. Since we have limited amount of data for
local training, the regularization is introduced to prevent overfitting.
The combination of LV AR and Ridge regularization achieved an
impressive 19.7% RMSE and 20.2% MAE improvement compared
to the baseline Persistent Model (PM ), as PM is known to be
very difficult to outperform due to strong autoregressive effects on
short-term irradiance forecasting.
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